Observations of smallholder inefficiency often reflect failure to control for variation in natural conditions uncontrollable by farmer.

Ex: Ivorien rice farmers – median falls on PPF w/ control for soils, rain, pests, etc. vs. 52% w/o (Sherlund, Barrett & Adesina JDE 2002)

Smallholders are poor but efficient.

Need markets, policies and technologies that make productivity gains feasible/profitable.
But heterogeneous uptake of innovations

LSMS-ISA data show that uptake of modern ag inputs varies markedly, w/n and among countries. (Sheahan & Barrett, FP in press)
Likely reflects heterogeneous returns

Recent studies find spatially heterogeneous returns to inputs due to soils, water, market prices:

Suri (*EMTRA* 2011) – Kenya hybrid maize seed
McCullough et al. (WP 2016) - Ethiopia fertilizer
Burke et al. (*AgEcon* 2016) - Zambia fertilizer
Harou et al. (*JAfrEcon* in press) - Malawi fertilizer

https://www.ag-analytics.org/AgRiskManagement/EthiopiaGeoApp
Ag input productivity commonly depends on pests, soils, temperature, water: **Example: Soil degradation in Kenya** Marginal returns to fertilizer application low on degraded soils; and poorest farmers are on the most degraded soils. Soil degradation also feeds a striga weed problem that discourages uptake ($7bn/yr in crop losses).

Marenya & Barrett *AJAE* 2009
As does market access and prices

Transport costs and reliable access to intermediaries drive input/output prices
Omamo (AJAE 1996)

Fuel prices have a big impact on food prices due to infrastructure deficiencies
(Dillon & Barrett AJAE 2016)

Burkina Faso school feeding program and cowpeas (Harou et al. WD 2013) – trader seasonality, market access and bulking
Key implications

1. Context matters
 - Best technologies vary ... one size fits all approaches fail
 - Physical/institutional infrastructure drive incentives:
 - ICT to close information gaps (example: ECX)
 - Roads, reduced (formal/informal) trade barriers
 - Need more attention in ag R&D to adaptation to agro-ecological niches
 - Requires adequate local applied scientific research capacity
 - Investment in soils and water and essential ... ag-env’t win-win
 - Requires companies with incentive to invest in adaptive research: workforce quality, reliable IP protection, commercial finance access
Key implications

2. Bundled approaches often needed

- Multiple constraints often bind (nested or simultaneously)
 - Second-limiting factors can stifle gains from new technologies (e.g., Bt cotton in China)
- Success of BRAC ultra-poor programs (Bandiera et al. WP 2016, Banerjee et al. Science 2015)
- Often need to address natural resources conservation, market access, and modern inputs simultaneously
 - Contract farming can help leverage private capital: e.g., sugar farms in Kenya; vegetables in Madagascar
Thank you for your interest and comments!